Our Story

Executive Summary

    • Reata’s mission is to develop novel therapeutics for patients with serious and life-threatening diseases by targeting molecular pathways that regulate cellular metabolism and inflammation.
    • Our lead product candidates, bardoxolone methyl and omaveloxolone, are Nrf2 activators, previously referred to as antioxidant inflammation modulators (AIMs). Nrf2 is an important transcription factor for restoring mitochondrial function, reducing oxidative stress, and resolving inflammation.
    • Bardoxolone methyl is currently in a pivotal Phase 2/3 (CARDINAL) study for the treatment of chronic kidney disease caused by Alport syndrome , a Phase 3 (CATALYST) study for the treatment of CTD-PAH, and a Phase 2 (LARIAT) study for the treatment of PH-ILD.
    • Omaveloxolone is being studied in two genetic disorders involving mitochondrial dysfunction: Friedreich’s ataxia (screening underway for part two of MOXIe) and mitochondrial myopathies (enrollment underway for part one of MOTOR). Omaveloxolone is being studied in a Phase 1b/2 (REVEAL) study in melanoma patients to test its ability to augment existing immunotherapies such as ipilimumab and nivolumab.
    • RTA 901, a C-Terminal HSP90 inhibitor, is being studied in a Phase 1 trial in healthy volunteers.

Our Story

Reata’s mission is to develop novel therapeutics for patients with serious and life-threatening diseases by targeting molecular pathways that regulate cellular metabolism and inflammation. Our lead product candidates, bardoxolone methyl and omaveloxolone, are Nrf2 activators, previously referred to as antioxidant inflammation modulators (AIMs). Nrf2 is an important transcription factor for restoring mitochondrial function, reducing oxidative stress, and resolving inflammation.

Bardoxolone methyl is being studied in a Phase 2/3 trial in chronic kidney disease caused by Alport Syndrome called CARDINAL. We are enrolling patients in the Phase 3 portion of CARDINAL, which is an international, multi-center, double-blind, randomized, placebo-controlled study of the safety and efficacy of bardoxolone methyl in patients with Alport syndrome. In July 2017, we received orphan drug designation from the United States Food and Drug Administration (FDA) for bardoxolone methyl for the treatment of Alport syndrome. We expect data to be available in the second half of 2019.

In addition, bardoxolone methyl is currently being studied in a Phase 3 trial, known as CATALYST, for the treatment of pulmonary arterial hypertension (PAH) associated with connective tissue disease (CTD-PAH). Data from CATALYST are expected to be available during the second half of 2018. In 2015, the FDA granted our request for orphan drug designation for the treatment of PAH. Bardoxolone methyl is also being studied in a Phase 2 trial, known as LARIAT, for the treatment of pulmonary hypertension (PH) due to interstitial lung disease (PH-ILD) and PAH. We began enrolling patients in CATALYST in October 2016.

Omaveloxolone is in Phase 2, and Phase 1b/2, clinical development for the treatment of multiple diseases, including our MOXIe trial in Friedreich’s ataxia (FA); our MOTOR trial in mitochondrial myopathies (MM), sometimes referred to as mitochondrial disease with myopathy; and our REVEAL trial in melanoma. MOXIe and MOTOR are both two-part Phase 2 trials, each part of which is randomized, placebo-controlled, and double-blind. Part one of each trial is a dose-escalation portion to evaluate the safety and efficacy of omaveloxolone. We are screening patients for part two of MOXIe and are enrolling patients in part one of MOTOR. Data from part two of each of the trials, if part one supports initiating part two, have the potential to be used for registration. There are no currently approved therapies for either FA or MM. In June 2017, we announced data from part one of the Phase 2 MOXIe trial. We expect data from part one of MOTOR in the second half of 2017. The REVEAL trial is an open label Phase 1b/2 trial to evaluate the safety, pharmacodynamics, and efficacy of omaveloxolone in combination with existing immunotherapies for the treatment of melanoma. Phase 1b data from REVEAL are expected in the second half of 2017.

In addition to our lead Nrf2 product candidates, we have initiated a Phase 1 study of RTA 901, the lead molecule in our new class of heat shock protein modulators, to evaluate its safety, tolerability, and pharmacokinetic profile in healthy adult volunteers. These compounds target pathways involved in the cellular response to misfolded proteins and mitochondrial protein import. RTA 901 and related analogs have shown promising effects in animal models of neurological disease. We plan to complete the trial and report data in the second half of 2017.

Additionally, we retain several promising preclinical development programs employing both Nrf2 activators and other small molecules with different mechanisms of action. We believe that our product candidates and preclinical programs have the potential to improve clinical outcomes in numerous underserved patient populations.

The foundational biology of Nrf2 activators underlies our two lead product candidates, bardoxolone methyl and omaveloxolone. Nrf2 is a transcription factor that promotes normal mitochondrial function, increases production of antioxidant, reduces oxidative stress, and reduces pro-inflammatory signaling during the resolution of a normal, healthy inflammatory response. Since mitochondrial dysfunction, oxidative stress, and inflammation are features of many diseases, Nrf2 activators have many potential clinical applications and have been the subject of hundreds of peer-reviewed scientific papers. In addition to the Nrf2 activator programs, we have technologies in preclinical development targeting the treatment of diseases through a variety of mechanisms.

Additional information on the pharmacology of Nrf2 activators can be found here.

Beyond our platform technologies and in-licensed compounds, we are constantly working on novel science and have active internal discovery and preclinical programs in a number of significant disease areas. In addition to internal discovery, we continue to seek additional opportunities to in-license and collaboratively develop novel technologies from premier academic institutions. This operating model of combined internal discovery, in-licensing, and collaborative development guided the founding of Reata, and we continue this strategy today to maintain a pipeline of promising development programs.